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K Abstract
A general adaptive control structure is described which in- the underscore will denote the vector of coefficients, that is,
cludes, as a special case, conventional model reference adap-

(J tive controllers. The relationship between controller parame- g"ter errors and measured signal errors are described in a form G (2)
suitable for application of many parameter estimation tech-
niques. A simplified missile pitch-axis example is given to L go

I illustrate the application of the general structure. When a polynomial coefficient vector such as C is used in
an equation requiring a vector of larger dimension, !2 should

1. INTRODUCTION be understood to include additional zero coefficients
This paper focuses on the structural aspects of adaptive corresponding to higher powers of s:

controllers, omitting a treatment of parameter identification G(s) = 0 sn+k + + •• +0 + g,, + + + go. (3)
laws. An adaptive control structure representation is
developed, which describes, as a special case, conventional Similarly, the symbol Q will denote a zero vector of what-
model reference adaptive controllers. ever dimension is appropriate.

The structure includes the combined effect of three con- An overbar will denote the Toeplitz matrix
trol components: (1) a parameterized family of plants, (3) a C, 0
controller parameterization, and (3) a design rule. By 'design 0 0

M~ rule" we mean the objective of the adaptive system,
described as a functional dependence of the tuned controller " =

parameters on the plant parameters. - 0
This paper provides a unified framework for describing L0 0

'QJ a broad class of adaptive controller structures; a "general The number of columns will be determined by the context in
adaptive control structure" is given which includes, as a spe- which the matrix appears.
cial case, conventional model reference adaptive control I will denote an identity matrix of the appropriate
structures. However, the general structure need not be spe- dimension.
cialized to be applied; certain "error equations" describing
the interrelationship of parameter errors and signal errors in 2. TUNED ADAPTIVE CONTROL SYSTEM
a form suitable for estimation, may be developed directly in 2.1 General Structure
terms of the general structure. Let up and yp denote, respectively, the input and output

Ultimately, it is hoped that the added flexibility of an Wth order SISO plant. Let r denote an exogenous corn-
afforded by the generalized structure will allow a formal mand input. Let A(s) be a chosen Hurwitz polynomial of
development of robust adaptive control laws for practical degree N > n and define
systems. As part of an exploration of practical potential, a
popular engineering approach to missile autopilot design is sN
re-developed within the formal framework of this paper, and
is simulated.

The paper is organized as follows. Section 2 describes F 0 1

the general structure for the case of the tuned (post- F0 := F : F0 0
adaptation) system. Section 3 describes the untuned case, A(s)
and develops the error equations in the general framework. Fo
Section 4 provides a simple parameter adjustment law,
without much analysis, simply to complete the system and
allow an example to be given. Section 5 provides the mis- I: F0up, w' := Fy,, w, := For (6)
sile autopilot example. Conclusions are given in Section 6.

Notation [w :=[wZ = F]7
For a polynomial W, [r (7)

G (s) = g,,s + g, l - ' + •••+ go, (1)

2.1.1 Plant

This research has been supported by AFATL under contract A relationship exists between the elements of
number F08635-86-C-0138. w (w WY w1

7"due to the plant input-output relationship.



Nominally, To complete the explanation of the new structure, we( PS4 , relate the signal vector w' to the constructable signal vector

Yp = Up, (8) w. Through some algebraic manipulation, we get

where Np and Dp are polynomials. Hence w,= Up (16)

Dpyp = Npup (9) M12 MIIM21M22 MIIM2j1]1
Dp Np Extracting a common denominator, A, yields"-fyP - -fup = 0. (10)

A TA" N11  N12
With the definition of w above, (10) is A A F

e)c w =0 (1 la) w = N N2 "j. (17)

eT= -_ QIT ] (1Ib) N21 N

A A

Next, letting CN be the matrix of coefficients of the numera-

Of course, scaling of Op in (!) does not cha,-.ge the tor polynomnals, i.e.,
right-hand-side of (11 a), so we may select any one nonzero &N1 &2,
parameter in Ep at will. This corresponds to assuming, for CT = N 1 (18)
example, that the plant denominator polynomial Dp is N S 22
monic.

Allowing all but one parameter to be unknown yields

corresponds to complete pole and zero uncertainty. This w"C (19)
high degree of uncertainty is frequently conservative; plant = w- (9
uncertainty often admits a lower-degree parameterization. Finally, to obtain precisely the form of (11), simply augment
For this reason, we introduce the parameterization illustrated CNT with some zero columns to multiply the w, part of w:
in Figure 1. In the figure, CT :- [C/ 0] (20)

M(s) = [M 21(s) M22(s) j (12) so that (19) becomes

w" = CTew (21)
is a known stable, proper, linear time-invariant transfer
function matrix. The parameter vector 6p in this figure can and (15) becomes
have fewer elements than the corresponding vector in (11). eCPw = 0. (22)

f g Equation (22) is the generalized version of (11). The
P, dimension of the uncertain vector ep is reduced by the pres-

ence of the known matrix Cp, which is calculated from the
interconnection structure M. (Incidentally, this interconnec-
tion structure applies in the same fashion for multi-input
multi-ouput (MIMO) systems, provided M2t is left-

M(s) invertible.)
The plant parameterization of Figure 1 includes, as a

special case, the complete parameter uncertainty of (11), by

Figure 1 choosing
P lan t P aram eteriza ion ' 1 [1 O1 1 1 2 - ( 3Lemma I Without loss of generality, we may assume M 11 = M12 = M 2 1 =1, M22=0. (23)

that M2j is stable and proper. (Proof in appendix.) FO
To relate the structure of Figure I to the simple linear

constraint of equation (11), we first define 2.1.2 Control
3[f] A broad class of control laws can be constructed by let-

'= (1) ting up be a linear combination of the elements of w as
where f and g are the signals appearing in Figure 1. Then shown in Figure 2. That is,
with the definition up = VrW (24)

[-i 1 for some constant vector \i,. Since
Op (14) u = Arw., (25)

the relationship f = Tg in the figure is equivalent to the equation (24) is equivalent to
equation epw = 0. (15) [TIOTI)W.=o (26)



Letting c - [AT I QT I ], (26) becomes It is necessary that, together, (30a) and (30b) imply the goal

e w = 0. (27) U(3pc

In adaptive control, it is important to distinguish
between fixed controller parameters and adjustable controller for all (up, yp, r] e X.
parameters. Thus while (27) describes a very broad class of Note that (30a) and (30b) are each a linear constraint,
controllers, one may wish to constrain the tuned controller to which together must imply the third linear constraint (30c).
some subset. Consequently, we shall study controllers of the That is, the third constraint lies in the subspace spanned byformThtstetidcntinlisitesbsaesnedy

the first two, hence there must exist scalars a, b e S such
e~Crw = 0, (28) that

where Cc is a real matrix defining the structure constraints, aerCF + berCrF = O(31)
and Oc is the vector of adjustable parameters. Note that
since scaling of 8 c does not change the right-hand-side, we Given fixed values of Op, @G, CP, CC, satisfaction of
may again assume knowledge of one nonzero element of (31) for some (unique) 1 c and some a, b corresponds to
eo. existence (uniqueness) of "tuned system" controller gains.

This interrelationship will also have significance later in the
F discussion of the untuned system.
0 2.2 Special Case

w r For added clarity, we give a simple special case of the

above general equations. Other interesting examples exist
and will be included in a future paper.

+ - P YP Let the plant be P = NP-s), with Np Hurwitz, and Dp

monic, and of degrees n-I and n respectively (for ease of
exposition). Let there be a positive lower bound on theuleading coefficient of Np. Let the coefficents of Np and Dp

y be otherwise unknown. Then

77w=O, eP=[-T I D I T] (32)

Let the goal be
Figure 2 NM(s)

Controller Parameterization Yp rM(s) (33)

A.1.3 boad sowhere NM, DM are of degree n-1 and n respectively, withA broad set of objectives (including model-matching, D uwt.Tu

loopshaping, and pole-placement) can be represented by DM Hurwitz. Thus
another linear interrelationship: eTw = 0, with E T I _ (34)

OEw = 0. (29)
Let A = AIA 2 where A, is a degree-one polynomial.

2.1.4 Interrelationship Figure 3 shows a (non-minimal) "tuned" controller
Underlying the notion of "tuned" system is the under- which achieves the goal ((33), (34)). Figure 3 is equivalent

standing that the plant equation and the control equation to
together imply achievement of the goal, without any other EOcTw = 0 (35a)
assumptions regarding the excitation. This may be stated
more precisely.1

Consider the scalar field S = ( single-input single- 1 0 0
output convolution kernels ]. Let X be the linear space over CcA 0 (35b)
S of all triplets (up, Y p, r) such that each is finite and piece- 0 A
wise continuous. 1

The plant constraint (22) is ec

9CpIF = 0 (30a) The scalars required to satisfy (31) are

a=l1, b=-1(6The control constraint (28) is A, (36)

[.p]
e CCF [YPj 0. (30b)



Theorem 2 : For any chosen LTI filterf,

e:=fe + Jb('jECw) - OT(Cc~w) = TCCT -jbW).

The last equation shows that the parameter error 4 is
related to the error signal el in an especially simple way:
the error signal is the product of the parameter error and a
known (that is, easily constructed) signal vector. This sim-

pyp ple form is ideally suited for common parameter estimation
schemes.

Let us now simplify notation somewhat. Since, as
mentioned previously, at least one of the controller parame-

(Dp-DM)A ters in 8 c may be considered known, it follows that at least
one element of 0 c is zero. Removing the corresponding row
of C (-fbw) would not affect Theorem 2, so let

Figure 3 i':=CT(-fbw) with certain rows removed, (41)

Special Case: = c with known zero elements removed, (42)
Pole Placement Structure such that el() = *T(t);(t). - (43)

3. UNTUNED SYSTEM 4. ADAPTATION
The untuned-system analysis is based on three sets of Theorem 2 shows that the general structure provides

equations: (A) the tuned-system equations, (B) the parameter parameter error information in an especially simple form. A
interrelationship, and (C) the untuned-system equations. variety of parameter adjustment laws would work well.

(A) Tuned-System Equations Here we briefly state one choice. Let
It is now necessary to distinguish between tuned and -g1 Q
untuned parameters and signals. Let w* denote the value of 0c(t) g(t) (44)tr(G) + e
w which would be produced by the tuned system. Thus

subject to known upper and lower bounds, and9 CTw*(t) = 0 Vt (37a) Q(t) = -2aQ + v(t)e(t) + G(r)O, Q(0) = 0 (45)

e-Tw*(t) = 0 Vt (37b) G(t) = -2aG(t) + (1 ) T(t) G(0)= = 0 (46)
G 0Vwhere a, g, and e are any chosen positive gains, and tr(G)

(B) Parameter Interrelationship denotes the trace of G(t).
Recalling (31), we have Remarks: (1) g, controls the rate of parameter adjust-

aepCp~w + bE).Ccw = eGw V wE Fx, xr X. (38) ment. (2) a controls the rate of "forgetting" of past informa-
tion, which is important for time-varying systems. (3) e is

(C) Untuned-System Equations simply a small number to avoid division by zero.
Let w denote the signal vector which actually arises from the The adjustment laws above are desirable because of the
operation of the untuned (and possibly time-varying) system. following properties.
Regardless of whether or not the system is tuned, the plant
input-output equation (22) is satisfied: Theorem 3 . With the adjustment laws (44) through (46),

T = 0 Vt1. $)(t) = G(t) 0i(t).
w(t) (39a) tr(G) +

Let Oc(t) denote the controller gains used (in lieu of d
knowledge of 8c). Then Corollary: 711112 < 0. (Proof in appendix.)

OC(t)Ccw(t) = 0 V t (39b) A further discussion of adaptation is outside the scope
of the controller). The of this paper. For a discussion of adaptive laws resembling

(thi is bydefiitin, he oeraionthose above, the in'terested reader can see [1], [2].
goal need not be satisfied, so we define (and construct) an
error signal e(t) by 5. MISSILE EXAMPLE

OeG(t) =: e(t) Vt. (39c) 5.1 Linear Pitch-Axis Model

Define the controller parameter error vector to be For the purpose of demonstrating the application of the
general adaptive structure described above, we use the fol-

oc(t) = ec(t) - 1c (40) lowing as a "truth model" of the plant.

Then the following relationships exist between e(t) and Oc<') - r u
(proved in the appenix): [] I ccJ + [ ZI (47a), = M. 0 q Ma
Theorem) :I

et) = -bI +t)CVw(t). Z.V 0 q v] 8 (47b)



This model describes the short period pitch axis dynamics of We represent the first portion of the gain schedule
an idealized missile. Variable 8 is the deflection of the pitch (equation (48)) with the goal
fins, a is the angle of attack, q is the pitch rate, Nz is the 60
normal acceleration, V is the missile velocity, and the q =- s + 60q "  (53)

coefficients of the state space description (ean##mel:) are
given by The above descriptions fit into the special case of the

general structure described earlier in the paper (equations
Za = -- CN, Z = ":-CN, (32) through (34)), with Np = M6, D, = s, NM =60,

Ma MV DM =s+60.

= Cpda, M6 = E-CM6 The tuned controller takes the form of equations (35),
lYY /YY hence

CN, = 52, CM = -63 OT =[-M 1-60 1 60]. (54)

CN8 = 19 - 9.7M + 1.43M2 CMS = -119 + 57.9M - 8.7M2 It happens that for this degree-one case, A = A1, and hence

S = 0.31 ft2, C-= 0.625 ft, m = 7 slugs, 1yy = 71 slug-ft2  Crw simplifies to
4-=' pV 2, V= 1100M, p = .0024e- '0° °0 3Sh

Specification of mach number M and altitude h determines CTw = q (55)
all of the coefficients. For our purposes, the above model is I.
valid from from mach 0.5 to 4.0, and altitude 0 to 100 kft. We construct the error signal as described previously in

A second order actuator is also included (not shown in Section 3. As mentioned in the general exposition, a filter
(47)), with C = 0.65 and co = 250 rad/s. may be incorporated to emphasize a frequency of interest.

It is assumed that Nz and q are measurable via an We emphasize the dither frequency, where (51) is valid, by
accelerometer and rate gyro. choosing the filter

5.2 Gain Schedule f = .....-L, Nf=s, Df =s 2 +2(0.2)60s +60 2  (56)

Reasonable performance requirements and robustness Df
margins are described in [3] and [4]. Miss distance can be We construct eL as defined in Theorem 2. Then the
made small when Nz tracks a command Nc with a response Theorem yields e1=4 Cr(-bw). Recalling that, for the spe-

time constant between 0.1 sec and 0.4 sec. Significant phase cial case, b-- I  (equation (36)), we have that
uncertainty occurs above 100 rad/sec, due to actuator and A,
sensor dynamics, and structural modes. e T T Nf S lenk1-O-Wcc- ). Since only the first element of E@c is unk-

The following gain schedule achieves the performance 7
objectives for dynamic pressure 4-ranging from about 100 to nown, '-.=[ 0 I 0 ] (see (42) for the definition of ¢,).
about 10,000. Thus, following equations (41) through (43), and applying

8 = -- (qc-q) (48) (55), = f(7
w 8 (57)

=-Ms/.093 = (49) e(t) = T(t)f() (58)

qc = .07 ) (Nc - Nz) + dither (50) We implement the adaptive laws (44) through (46),
5 s q using CF = 5, g, = 10, F_ = 10-10.

Remark: the "dither" signal is not actually a part of the gain 5.4 Simulation Results
schedule; it is a part of the adaptive controller described
below. The above adaptive system was simulated, using the

state equations from section 5.1 with an added second order
5.3 Adaptive Control actuator, and the adaptive system described in section 5.3.

A few informal observations are in order. The open The remainder of the gain schedule, namely (50), is accom-
loop plant described above is a highly resonant second order plished by inserting the estimate Oct of -A,4 into (49) to
system. The input-output response of the plant is a strong obtain 4, which is then used to determine the other gains of
function of dynamic pressure i, and a weak function of (50).
velocity V. At mid-to-high frequencies ( = 60 rad/sec), the Two typical simulation runs are shown ir Figure 4.
q18 transfer function is closely app,'nximated by The command input Nc was 6ihosen to be a step of 100 ft/s2

q = MIS. (51) at time zero. The system states were all initially zero.
s The chosen flight condition is M=4 at 60kft. The

We have found that this simple model wth one unknown correct value of -Mb (i.e., the value of Ec1 ) is 126, which is
gain is an acceptable plant parameterization for the purpose shown as a horizontal line in the figure. The controller
of adaptive control. parameter estimate Oc is initialized at 1000 for run (1), and

For ease of identifiability, we add a "dither" signal to 10 for run (2). In both cases the estimate converges to theq, of correct value, and the response of N, displays a time con-

dither = .Olsin(60t). (52) stant in the desired range of 0.1 to 0.4 seconds. Small oscil-



Nz response 6. CONCLUSION
A broad class of tuned adaptive control structures can

be described by three simple equations:

- . eTcw(t) = 0 (59a)

ecw(t) = 0 (59b)

eow(t) = 0 (59)

These three equations constitute a unified framework for
2 studying a variety of adaptive systems.

A dithered adaptive missile autopilot can be developed
within the framework, as indicated by the pitch-axis example
of this paper. The notion of an adaptive missile autopilot is
not new; our contribution is a formal framework for the

-5 ,-. - development of the adaptive structure. It is hoped that the
C.C 0.2 0.4 0.6 0.8 1.0 clarity provided by this framework will expedite the formal

time (seconds) analysis of the overall adaptive sy3tem.
Appendix

Parameter Fstiinate Proof of Lemma 1: One can factor M21(s) into (H(s)1G(s))M42j(s)

where H(s) contains the 0* zeros Of M21(s), G(s) is Hurwitz. G1ll is
proper, and M2il is stable and proper. Then defining f_ (HIG)f.
g_ = (HIG)g, one obtains

g_ 1 [ M11 (HIG)M12

" =LM 2, M2 J'f g

rproof of Theorem 1: Let s := w- w* (60)

Then (37a) and (39a) imply OeCr7 = 0. (61)

Equation (39b) is equivalent to ECTw + ¢c= 0. (62)

Equation (37b) and (62) imply elCcs, + ¢ -Crcw - 0. (63)

22- Equations (37c) and (39c) imply e = eri (64)

Equation (38) yields aerCjr + beC j r (65)

0. 0.2 0.4 0.6 0.8 1.0 Applying (61) to (65) yields bO Tr% = Or@. (66)

time (seconds) Applying (63), -borCcw = E0. (67)

Applying (64) yields -bo Crw = e. (68)
Figure 4 0

Simulation Results Proof of Theorem 2: Letting €c = 0c - 8c in the statement of
Theorem 1, and noting that the constant ec commutes with b, one finds

e = -b(O rCw) + eT(bCrw). (69)

lations about the commanded value occur due to the use of Algebraic manipulation yields Theorem 2. 0

the dither signal. Proof of Theorem 3: Since the differential equations are locally
A non-adaptive system could not tolerate nearly this Lipschitzian, their solutions are unique. One can assume their solutions

degree of i uncertainty; it would not even be stable for this and v, rify by differentiation. Thus one may show that

range. GQ) - je-201' ;s(?);(t)dt. QQ) = G(t)¢(t) (70)

5.5 Caveats from which the theorem follows. The corollary follows from

The point of this example is to show that the new gen- diraating liQ)ll, applying the theorem, and noting that for all sym-
eral adaptive structure and associated theory has application metric positive semideinite matrices M, -r4 TM, < 0. 0
to missile autopilot design. It is not the first application of Reference
dithered adaptive control of missiles, nor is it a a final
design or a complete theory for missile autopilots. It is, 1. J. M. Krause and P. P. Khargonekar, "On an identification Pob-

however, an indication that these popular engineering solu- len Arising in Robust Adaptive Control," Proceedings of the 26th

dons may find nor- formal support within the theoretical IEEE Copference on Decision and Control, 1987.

framework of this paper, and future extensions. 2. G. Kreisselmeier and D. Joos, "Rate of Convergence in Model
Reference Adaptive Control," IEEE Transactions on Automatic

A variety of extensions might be considered, such as Control, vol. AC-27, June, 1982.
the use of a 6DOF missile model to allow the dither to take 3. F. W. Nesline and M. L. Nesline, "How Autopilot Requirements
place in the roll axis rather than the pitch axis, or an Constrain the Aerodynamic Design of Homing Missiles,"
analysis of the required dither magnitude for acceptable Proceedings of the 1984 American Control Conference.

identification in the presence of wind gust, or a study of 4. F. W. Nesline and M. L. Nesline, "Homing Missile Autopilot

non-zero initial conditions and time-varying plant parame- Response Sensitivity to Stability Derivative Variations." Proceed-
ters. ings of the 23rd Conference on Decision and Control. December,

1984.


